
Microservices Approach for the Internet of Things
Björn Butzin, Frank Golatowski, Dirk Timmermann

Institute of Applied Microelectronics and Computer Engineering,
University of Rostock, Germany

bjoern.butzin@uni-rostock.de

Abstract—The microservice approach has created a hype in
the domain of cloud and enterprise application business. Before,
grown, monolithic, software has been pushed to the limits of
maintainability and scalability. The microservice architecture
approach utilizes the service oriented architecture together with
best practices and recent developments in software virtualization
to overcome those issues. One monolithic application is split up
into a set of distributed services. Those are strongly decoupled
to enable high maintainability and scalability. In this case an
application is split up in a top down manner.

In the internet of things, applications need to be put together
from a set of small and independent services. Thus, creating
value added services would require to freely combine services of
different vendors to fully make use of the IoT’s heterogeneity.

Even though the direction is different, many of the require-
ments in microservices are similar to those of the internet of
things. This paper investigates patterns and best practices that
are used in the microservices approach and how they can be used
in the internet of things. Since the companies using microservices
have made considerations on how services have to be designed
to work together properly, IoT applications might adopt several
of these design decisions to improve the ability to create value
added applications from a multitude of services.

Index Terms—internet of things, microservices, patterns, best
practices, distributed services, service oriented architecture

I. MOTIVATION

The number of connected devices is rapidly growing. Gart-
ner predicts about 21 billion devices by 2020 [1] Cisco even
predicts about 50 billion connected devices [2]. However, the
question arises how these devices or ”things” could interact
to create an added value to the user. This starts from basic
considerations like how to communicate, up to handling the
complexity of hundreds of things to cooperate. It is obvious to
see that there could not be one monolithic application to handle
all data that is produced and consumed by the individual
things anymore. This has its reason in the number of device
combinations far beyond what we can handle today, but also in
the decentralized approach that is intensified by the number of
different business stakeholders. Thus, we need an approach to
handle systems complexity in a way that allows applications
to work independently of each other and only have a loose
coupling if there is a necessity to communicate with other
things. To achieve loose coupling as well as encapsulation, the
service oriented architecture (SOA) already is a solution in the
internet of things (IoT) and cyber-physical systems (CPS) that
is used today. SOA has been utilized throughout the recent
years but it can be seen that this is not sufficient to achieve
interoperability between multiple solution providers.

In 2014 the term microservice was coined. Very briefly
the term describes a more concrete interpretation of SOA.
James Lewis and Martin Fowler describe microservices the
following: ”In short, the microservice architectural style is an
approach to developing a single application as a suite of small
services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API.
These services are built around business capabilities and inde-
pendently deployable by fully automated deployment machin-
ery. There is a bare minimum of centralized management of
these services, which may be written in different programming
languages and use different data storage technologies.” [3].
There are some similarities in the goals of microservices and
the internet of things, namely:

• lightweight communication,
• independent deployable software,
• a minimum of centralized management, and
• independent development techniques and technologies.

The microservice architecture was not invented, but emerged
from good practice. It has proven to be applicable for highly
scalable, fast changing, distributed applications on the cloud.
Some successful examples of adopters are Netflix [4], Amazon
[5], and Soundcloud [6].

Microservices and the SOA approach in the IoT / CPS
have the same goal: building one or multiple applications
from a set of different services. However, as depicted in
fig.1 these approaches come from different directions. Micro-
services originate from the enterprise software domain with
large monolithic software. Those applications have shown to
be hardly maintainable and scalable beyond a certain point.
Thus, the idea is to split up the monolith into smaller, modular
pieces. In contrast to that, in the IoT the small services are
already given as they align with the capabilities of the em-
bedded devices they represent. Hence, the challenge here is to
build up an value added application from these heterogeneous
services. This in turn requires the individual services to be
designed in a way to enable high degree of interoperability.
Thus, the internet of things is somewhat bottom up while the
microservices approach breaks up one application top down
and does not deal with a multitude of vendors. However, in the
microservices approach companies have made considerations
how these individual distributed services need to be designed
to work together properly. Hence, if internet of things services
also align to this design, their interoperability could also
benefit and enable easier creation of value added applications.

978-1-5090-1314-2/16$31.00 c© 2016 IEEE

Figure 1. SOA in the IoT and Microservices Overview

In the following we will investigate the state of the art
in microservices and internet of things application using ser-
vice oriented approaches. Afterwards we describe individual
aspects of the microservices approach and how they can be
incorporated into the internet of things.

II. STATE OF THE ART

A. Service Oriented Architecture in the Internet of Things

In the internet of things the service oriented architecture is a
natural choice due to the distributed, heterogeneous character
of this domain. While typically used in the enterprise domain,
full blown web services or RESTful HTTP solutions are
often to heavyweight for constrained devices and networks.
Hence, the ideas of web services and REST were used to
create standards that take into account the constraints of that
domain. The devices profile for web services (DPWS) [7]
as well as the constrained application protocol (CoAP) [8]
are examples of remote procedure call (RPC) and REST
derivatives for constrained devices. In the context of CPS
and industrial internet of things (IIoT) also OPC UA is used
[9]. Even though, the SOA is a well-fitting approach for
such applications, SOA leave much things open on how the
resulting service should look like. That is where ecosystems
and frameworks start to spread to substantiate the use of those
technologies.

Frameworks limit the choice of technologies to ease the
development of IoT or CPS applications. One could guess
that frameworks increase the interoperability on a technical
level. However, the behavior of the services is still up to the
developer and furthermore, as there are numerous frameworks
out there, the gain in interoperability can be neglected. Hence,
the use of frameworks can just ease the development of
individual services.

Ecosystems make much more specific assumptions about
the services and define interfaces to be implemented, thus,
enabling much higher interoperability. Nevertheless, they have

the drawback that the use case is much more limited and
interoperability is just given within that ecosystem. Some
examples are Thread[10] driven by Google or HomeKit[11]
driven by Apple, both for internet of things applications in
the smart home domain.

B. Microservice Architecture

As already mentioned, the microservice term was coined
just recently, but the ideas behind were not invented but arise
from best practices. Some of them are already several years
old. Sam Newman listed some of the basic technologies that
led to the microservices architecture in his book [12] which
shall be mentioned in the following.

• domain driven design [13] - intend to put the business
domain knowledge at the core of the software develop-
ment process. Domain experts are included more closely
into the loop of software engineering.

• continuous delivery [14] - treating every code repos-
itory commit as it could be the next product release.
This includes the automatic build, unit-, integration- and
performance-testing, as well as the calculation of different
software metrics. In advance to continuous integration,
continuous delivery also covers the automated deploy-
ment of applications.

• ports and adapters pattern (see fig. 2) - by Alistair
Cockburn, also known as hexagonal architecture [15]
provides an approach to separate business logic from
external technological considerations. Furthermore, this
pattern wants to break up the traditional layers of pre-
sentation, business logic and data / integration. Instead
applications have several ports e.g. for cloud connection,
databases, front-end, integration and further. Each port
has a mediation layer that handles crosscutting concerns
like monitoring and has several adapters that connect
to different technologies e.g. an adapter to a specific
MySQL database at the database connection port.

• machine to machine communication - data exchange
without human intervention.

• virtualization platforms - advances in virtualization,
especially application containers.

Building on top of these, the microservice architecture has
become an approach to support highly scalable, fast changing
business models in the cloud. Several big players like Netflix
or Amazon have already adopted this approach and have
shown that this architectural pattern fits their needs.

The intentions of companies to move to microservice archi-
tecture are manifold, but the most common reasons are better
scalability and maintainability. Furthermore, reduced time to
deployment and the ability to choose better technologies for
individual application parts play an important role. During the
attempts to solve these issues, best practices have emerged
from the experiences made. Those shall be investigated in the
following section.

Figure 2. Hexagonal Architecture

III. UTILIZING THE MICROSERVICE APPROACH FOR THE
INTERNET OF THINGS

In the following we will investigate different patterns and
best practices of the microservice approach and compare them
with the practices in IoT. We will cover the self-containment
of services, monitoring and the prevention of fault cascading,
choreography and orchestration, container technologies and
the handling of different service versions.

A. Self-Containment

In the microservice approach the property of self-
containment is one of the core aspects. The term self-
containment is used to describe, that services should contain
everything they need to fulfill their task on their own. This
includes not just its business logic but also its front- and back-
end, as well as required libraries. Keeping it this way the ser-
vices can be scaled individually by starting multiple instances.
Furthermore, dependencies to other services are kept small and
thus, services can evolve independently. Nevertheless, services
should not become too big in order to stay maintainable. The
question arises that always comes with the term microservices:
”How small should it be?”. The answer is not perfectly defined
but originates in the domain driven design idea. In fact the
answer is a trade-off between fulfilling the business case with
as less dependencies as possible, and still having a concise
business case to handle.

In the internet of things many SOA implementations
already stick close to this principle. Especially services rep-
resenting physical devices like sensors and actors are built
around very brief areas of business. This is mainly driven by
the constrained nature of the devices. Typically data is also
kept local at the sensors / actors for a short term, as long as
they can be stored. However, it is very uncommon today to

have those services to offer a front-end to users. Other ser-
vices in the internet of things, like optimization, aggregation,
control, etc., that might run on less- or un-constrained devices
have more freedom of design. Nevertheless, they should also
stick to the principle of self-containment, having in mind the
size of the service.

Adopting self-containment in the internet of things might
create the following benefits.

• By having the back-end as part of the service, we can
neglect dependencies for data storage. The data kept by
a service should not directly be accessible from outside
the service. This enforces the use of the service API
and thus, decouples external data consumers from the
internal representation of the data. Hence, this enables the
independent evolution of services. In this case the internal
data model can be freely changed, while maintaining
interoperability.

• Having each service providing its own user interface
would also enable independent evolution. This also omits
the need for a centralized front-end that has to be aware
of every possible device that might show up. Independent
services might provide their e.g. HTML5 fragments,
which can be put together into one dynamic panel.

• Providing the required libraries together with the service
makes the deployment much easier, as the installation of
dependencies is not required. Furthermore, if separated
e.g. by containers (see sect.III-D), required libraries of
different services do not interfere with each other.

• The limitation to have as less dependencies as possible
leads to a better decoupling between services, an increase
in autonomy and reduces the amount of required com-
munication in the overall network. In contrast to that,
limiting services to one concise business case leads to
better independent evolvability, reduction in the services
complexity, and a gain in freedom to compose services,
but might raise the number of dependencies. So there is
always a trade-off to consider.

B. Monitoring and Prevention of Fault Cascading

In order to provide monitoring capabilities, each service
should provide an interface to hand over monitoring infor-
mation. In particular the health status e.g. ok and broken, is
of high importance. This is due to the fact that other services
can check for this health status and can prevent to call broken
services as far as possible. If the calling service has no other
service that can be called, it can set its own status to broken
too.

In order to deal with the health status but also with unex-
pected failures the ”Circuit Breaker” pattern [16] has evolved
from practice. In short the circuit breaker checks health status
or remember the number of unsuccessful calls and trips if a
certain threshold is reached. If the circuit breaker is triggered
it will return an error instead of sending the call to the remote
service to prevent the broken service to be penetrated with
additional requests. After a certain amount of time the circuit
breaker tries to reach the service again to test if the services

has recovered or checks for the health status and enters an half
open state if the test is successful again. It is not completely
open immediately to prevent the called service to become
unavailable again due to high incoming traffic.

The circuit breaker pattern furthermore perfectly works
together with the ”Load Balancer” pattern [17]. In this case the
load balancer distributes workload on a set of equal services.
The circuit breaker enables the load balancer to put work only
on services that are in a good health state. Services to which
the circuit breaker is only half open the number of routed
requests is lowered. Broken services will, for the time being,
not be used.

In the internet of things, both, the load balancer and
the circuit breaker, can be used either on its own or in
combination. Both patterns have proven to be a good way
to handle the fault of remote services. With regard to the
constrained nature of many internet of things appliances these
patterns have additional benefits. The circuit breaker prevents
unnecessary messages sent to broken services. This reduces the
overall traffic in the constrained network and saves energy that
was otherwise spent for (re-)transmission. The load balancer
can increase the lifetime of wireless sensors as the workload
is shared among several devices, which enables them to stay
longer in low power modes. As the circuit breaker can be
used by every service (as needed) with no regard of the
called service, this pattern is always possible even if the called
service is provided by another vendor. Thus this is a good way
to provide resilience to IoT applications.

Related to the detection and prevention of faults is the
logging of services. In the microservice architecture it
is recommended to use one logging format throughout all
services. This helps to aggregate individual logs to get a
whole picture of the overall system. In the internet of things
however, this is not suitable as probably no one is in control of
all services hosted in an IoT scenario. Nevertheless, developers
of IoT services should be emphasized to use a common
logging format e.g. with internationalized time stamps to ease
integration with other logs.

C. Choreography over Orchestration

When talking about putting several services together, there
are multiple ways to do that. The grater concepts of doing so
are orchestration and choreography. Orchestration means, that
one instance, the conductor, is in control of the services to be
called and does that in a centralized way.

In a choreography instead, each participant does its part on
its own and the resulting application is created by the sum of
the individuals. The individual parts take up their activity on
an event driven basis.

From the microservice architecture point of view both is
possible. From practice one should favor choreography, except
there are good reasons to use orchestration. Choreography
implies a higher degree of freedom in the way things can
be handled. As example we can imagine a set of services that
is triggered by a single service in an orchestration manner. To
add an additional service, the conductor needs to be changed.

This however, is only possible if the conductor is not a product
of another vendor in an IoT scenario. When utilizing the
choreography approach, things look different. When a certain
event occurs, each service that listens to the event is triggered
to do its part. Now to add something is pretty easy. The new
service just needs to listen for this event and also do its part
if the event occurs.

However, there is one thing to keep in mind when using
the choreography style. There is no instance that can track if
all required actions are done successfully in the first place.
To overcome this issue there might be an additional service
that only monitors (not triggers) the services that need to be
executed. This way we can to monitor for successful execution,
but also can add new services on demand.

Today, IoT services are often combined using an orches-
tration style, because it is easier to implement and protocols
like HTTP do not have native support of event based com-
munication. An exception is the Message Queue Telemetry
Transport protocol (MQTT) which enforces to use event based
communication. The Idea of choreography in microservices
can serve as blueprint for internet of things services and
applications. Basic services are modeled as independent, using
event based communication. Value added services might take
care, that all services for a particular application are present
and listen to the corresponding events. Hence, the application
can monitor, if an initial event causes all related services
to execute. If a service does not respond to that event, the
value added service can take remedial actions. However, new
services can easily be plugged in, because the value added
service only makes sure that required services are executed,
but not limits which services are executed beyond.

D. Container

When talking about microservices a term that can often be
found is Docker. When looking at Google trends since 2013
this term is of increasingly growing interest. However, Docker
is one of several solutions for containers, also called operating-
system-level-virtualization [18]. Just to mention a few there
are openVZ [19], lxc / lxd [20] and rkt [21] for Linux, and
”Windows Server Containers” or ”Hyper-V Containers” for
Windows [22]. The basis for all of those is the concept of
namespaces. In short namespaces wrap system resources to
appear to processes as they would have their own instance. Ex-
amples would be routing tables, process ids, network interfaces
or mounting points [23]. Changes to that resource are only
visible to the processes within the namespace. However, the
processes are still running on the host system. This results in
the limitation that all containers use the same kernel and thus
e.g. a Windows container could not run on a Linux host or vice
versa. This method of virtualization is way more lightweight
compared to hypervisor virtualization and thus, allow better
performance, lower start-up times (seconds instead of minutes)
and less storage requirements.

For the microservice architecture this is helpful as the
individual services can be hosted as a single container. Those
containers enclose the microservice itself, including all re-

quired libraries and data, which also supports the requirement
of self-containment. This in turn provides several advantages:

• better testability - Tests can be run against the whole
container. Thus it is tested already in the environment
in which it will run during operation. This prevents
problems when putting the software into operation.

• ease of service deployment - Each container includes
the service and all of its dependencies. Thus, they can be
deployed without the need to care about different libraries
to be installed. Also one does not need to deal with differ-
ent versions of libraries that interfere, as each service is
packed together with its libraries into a single container.
Thus, the used libraries of one service are invisible to
other services. Furthermore the individual solutions, e.g.
Docker, provide tools to automatically deploy containers;
hence, deployment can be fully automated.

• better scalability - As services are highly decoupled,
each service can scale individually by just start / stop
multiple instances, i.e. containers of one image. This is
feasible since the overhead of container virtualization is
much lower and start-up happens much faster.

If the internet of things can also make use of containers,
depends mainly on the requirements of those technologies and
the constraints in the scenario. There are two projects that try
to create a minimal host for Docker containers, Boot2Docker
[24] and RancherOS [25]. Both require around 23MB of ROM
and at least 512MB of RAM to run. This already limits the use
cases of containers in the internet of things. Small embedded
device like sensors and actors with about less than 512kB of
ROM available are out of scope for container technologies.

A scenario in which we can use containers is at edge
computing [26] or in the fog [27]. The idea of fog and edge
computing is mainly to reduce latency and other network
related drawbacks by putting computational power at network
edges. The devices on those levels could be routers, smart
phones or small PCs which would be capable of running
containers. Most gateways are even powerful enough to host
several containers at once. Besides technical reasons fog or
edge computing might also be used to keep private data close
to the user / device.

If the devices at the network edges are not able to run
containers but are still not strongly constrained, there is an
alternative to operating-system-level-virtualization. Instead of
using containers to host multiple services one could use use
OSGi. OSGi doesn’t separate the applications as much as
containers, but can help to manage and deploy services. As
of course most OSGi implementations require Java SE to be
present this doesn’t help much on constrained devices. How-
ever, there are some implementations taking care of memory
usage. Concierge [28] is an OSGi implementation that requires
250kb ROM and runs on Java2ME CDC which has a footprint
2 MB RAM and 2.5 MB ROM and requires a 32-bit CPU.
An even smaller implementation is nOStrum (former nOSGi)
[29] which requires 233kB ROM. Additionally, nOStrum does
not use Java. Instead it is an OSGi implementation for ELF

Feature Microservices IoT / CPS
self containment wrap around business

domain and reduce
dependencies,
libraries packed with
application

often around device
capabilities, libraries
not packed with
application

orchestration vs.
choreography

choreography
preferred

often orchestration
(esp. when using
HTTP, DPWS or
CoAP)

container virtualiza-
tion

yes, Docker, lxc,
etc. for separation,
scalability and ease
of deployment

no, but similar, OSGi

continuous
integration

yes, test overall
application

partly, e.g. in single
vendor scenarios

continuous delivery yes, short release
cycles

no, rare updates

protocols HTTP HTTP, MQTT,
CoAP, DPWS

Table I
COMPARISON OF MICROSERVICE AND IOT APPROACH

binaries, thus, we can run arbitrary Linux binaries with it.
Of course, in internet of things scenarios incorporating

a cloud e.g. to reason about data, the requirements to run
containers are easily met as well.

E. Handling Different Service Versions

In the microservices approach, with container technology
in mind, deploying applications is greatly simplified.

A pattern that makes use of this fact is the immutable server
pattern [30]. After an application was tested and put into
operation this specific artifact is not altered anymore. This
can be emphasized by not providing any user credentials to
the container. Instead when something needs to be changed
one just replaces the application-container with a new version
of it. This makes sure, that every artifact in operation was
tested before. Furthermore if something in the new service
turns out to be faulty, the old version of the application can
easily be redeployed by replacing the new version again.

Another pattern that can be used with regard to multiple
versions of a service is the so called blue green deployment
[31]. Blue green deployment deals with the problem of re-
placing applications by new versions in place which would
cause a downtime of the service. Instead when deploying
a new version of a service the old and new versions are
running in parallel. At the beginning all requests are routed
to the old version of the service and the new service can be
started and configured. After everything works fine the routers
e.g. load balancer are triggered to route the requests to the
newly deployed services. This allows the introduction of new
versions without downtime. Furthermore, in case of a rollback
we just need to reroute traffic back to the old version.

The canary release [32] pattern is a slightly modified
version of the blue green deployment. Instead of routing any
traffic immediately to the new service, the fraction of traffic
that is routed to the new services is iteratively raised. This
keeps the impact of a faulty new service even smaller as not
everyone is immediately affected by the new version.

Another topic is the coexistence of different versions for
longer periods of time. Basically there are two possibilities
[12]. Maintaining two versions in parallel which means there
is e.g. a service of version 1 and one of version 2. This is
highly discouraged as both code bases have to be maintained
in parallel. The other way would be to have one service of the
new version that is accessible by the new and the old interface.
In this way the new interface just needs to internally redirect to
the new interface. If the old interface is not required anymore
the interface and redirection parts can just be removed. If there
are even more interface versions alive, those can be chained
this way. With this approach changes in the implementation
can be maintained in a single code base.

In the internet of things, the pattern immutable server, blue
green deployment, and canary release are not yet employed.
However they could be, together with container technology, to
enable updates with a minimum of risk and downtime. How
the version handling is done in the IoT domain is hard to
find out. Nevertheless, the considerations in the microservice
architecture remain valid in the IoT as well.

IV. CONCLUSION

In this paper we had a brief overview on some new patterns
and best practices that have emerged from the microservice
approach or have made it possible. We covered the aspect
of self-containment, dealing with service versions, monitoring
and fault handling. The container technology was investigated
as well as if orchestration or choreography should be used to
put services together. As a result of this paper we can see that
the architectural goals of both, microservices and the internet
of things, are quite similar. The practice instead sometimes is
different as shown in table I. The best practices and patterns
that can be found in the microservices approach are partially
already part of the SOA in the internet of things. Some, like
to favor choreography, might already be known, but are in
many cases not adopted in the internet of things, especially
when using RPC or REST based protocols. The operating-
system-level-virtualization is not yet adopted in the internet of
things and might show a new possibility for the deployment
and update of IoT services and applications. When operating-
system-level-virtualization would be used, the already existing
patterns for the roll out of new versions can be used.

Altogether, the microservice approach comes from another
direction than the internet of things but both have the same
architecture goal. People have made detailed considerations on
how services can be composed to create applications of them.
Many of those considerations can also be incorporated into
the internet of things to enable the creation of applications out
of distributed services even if they are provided by different
vendors.

REFERENCES

[1] Gartner says 6.4 billion connected ”things” will be in use in 2016,
up 30 percent from 2015. [Online]. Available: http://www.gartner.com/
newsroom/id/3165317

[2] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” in CISCO white paper, vol. 1, 2011, pp. 1–11.

[3] M. Fowler. Microservices guide. [Online]. Available: http://martinfowler.
com/microservices/

[4] S. Tilkov, “The modern cloud-based platform,” IEEE Software, vol. 32,
no. 2, pp. 112–116, Mar. 2015.

[5] Jim Gray and Werner Vogels, “A conversation with Werner Vogels,”
ACM Queue, vol. 4, no. 4, pp. 14–22, May 2006.

[6] Phil Calçado. (2015, Sep.) How we ended up with microservices.
[Online]. Available: http://philcalcado.com/2015/09/08/how we ended
up with microservices.html

[7] Devices Profile for Web Services (DPWS), OASIS standard, Rev. 1.1,
Jul. 2009. [Online]. Available: http://docs.oasis-open.org/ws-dd/ns/
dpws/2009/01

[8] The Constrained Application Protocol (CoAP), Internet Engineering
Task Force (IETF) proposed standard RFC 7252, Jun. 2014. [Online].
Available: https://datatracker.ietf.org/doc/rfc7252/

[9] G. Cândido, F. Jammes, J. B. d. Oliveira, and A. W. Colombo, “SOA
at device level in the industrial domain: Assessment of OPC UA and
DPWS specifications,” in 2010 8th IEEE International Conference on
Industrial Informatics, Jul., pp. 598–603.

[10] Thread. [Online]. Available: http://www.threadgroup.org/
[11] iOS 9 - HomeKit. [Online]. Available: http://www.apple.com/ios/

homekit/
[12] S. Newman, Building Microservices. O’Reilly Media, 2015.
[13] E. J. Evans, Domain-Driven Design: Tackling Complexity in the Heart

of Software. Boston: Addison Wesley, 2003.
[14] J. Humble and D. Farley, Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Pearson
Education, Jul. 2010.

[15] A. Cockburn. Hexagonal architecture. [Online]. Available: http:
//alistair.cockburn.us/Hexagonal+architecture

[16] Circuit breaker pattern. [Online]. Available: https://msdn.microsoft.com/
de-de/library/dn589784.aspx

[17] Cloud computing patterns — design patterns — service load
balancing. [Online]. Available: http://cloudpatterns.org/design patterns/
service load balancing

[18] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, Jul. 2014.

[19] OpenVZ. [Online]. Available: https://openvz.org
[20] Linux containers. [Online]. Available: https://linuxcontainers.org/
[21] rkt, A security-minded, standards-based container engine. [Online].

Available: https://coreos.com/rkt/
[22] (2016, May) Windows containers quick start. [On-

line]. Available: https://msdn.microsoft.com/en-us/virtualization/
windowscontainers/quick start/quick start

[23] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization
to support PaaS,” in 2014 IEEE International Conference on Cloud
Engineering (IC2E), Mar. 2014, pp. 610–614.

[24] Boot2docker by boot2docker. [Online]. Available: http://boot2docker.io/
[25] RancherOS. [Online]. Available: http://rancher.com/rancher-os/
[26] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer,

vol. 49, no. 5, pp. 78–81, May 2016.
[27] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing

and its role in the internet of things,” in Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, ser. MCC
’12. ACM, pp. 13–16. [Online]. Available: http://doi.acm.org/10.1145/
2342509.2342513

[28] Maven - concierge OSGi - an optimized OSGi r3 implementation
for mobile and embedded systems - overview. [Online]. Available:
http://concierge.sourceforge.net/

[29] S. Kächele, J. Domaschka, H. Schmidt, and F. J. Hauck, “nOSGi:
a posix-compliant native OSGi framework,” in Proceedings of the
5th International Conference on Communication System Software and
Middleware, New York, NY, USA, 2011, pp. 4:1–4:2.

[30] bliki: ImmutableServer. [Online]. Available: http://martinfowler.com/
bliki/ImmutableServer.html

[31] Using blue-green deployment to reduce downtime and risk |
cloud foundry docs. [Online]. Available: https://docs.cloudfoundry.org/
devguide/deploy-apps/blue-green.html

[32] bliki: CanaryRelease. [Online]. Available: http://martinfowler.com/bliki/
CanaryRelease.html

